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Triangle Finding

Given a graph G=(V,E), decide if it contains a triangle  

three vertices u, v, w such that (u, v) � E
(u, w) � E
(v, w) � Eunweighted (and undirected)



Triangle Finding

Given a graph G=(V,E), decide if it contains a triangle  

no triangle

u

v

w

Examples:

three vertices u, v, w such that (u, v) � E
(u, w) � E
(v, w) � Eunweighted (and undirected)



Triangle Finding

Given a graph G=(V,E), decide if it contains a triangle  

Classical algorithms: trivial algorithm O(n3) time

best known algorithm O(n2.38) time reduction to matrix 
multiplication

Trivial quantum algorithm: O(n1.5) time by quantum search over triples of vertices 

( here n = |V| ) 

unweighted (and undirected)

try all
�n
3

�
= �(n3)

triples of vertices

˜

★ one of “most elementary” unsettled graph-theoretic problems 

★ many algorithmic applications:

Triangle Finding
graph-theoretic problems

Boolean matrix multiplication

3SUM

Max2SAT

★ historically, the study of triangle finding has lead to the development of  
several quantum techniques (“showcase for new quantum techniques”) 

three vertices u, v, w such that (u, v) � E
(u, w) � E
(v, w) � E



Query Complexity of Triangle Finding

Given a graph G=(V,E), decide if it contains a triangle  

number of queries of the form “is (v1,v2) an edge?” needed to solve 
the problem

query complexity of triangle finding

any classical algorithm requires �(n2) queries

any quantum algorithm requires �(n) queries

trivial lower bounds

best known lower bound

undirected and unweighted

query complexity = number of queries made
time complexity = number of queries + number of other operations

�n
2

�
= O(n2) queries are obviously enough



Quantum Query Complexity of Triangle Finding

O(n1.3)-query quantum algorithm using quantum walks [Magniez, Santha, Szegedy 05]
       (also solves weighted versions of triangle finding with the same complexity)     

O(n35/27)-query quantum algorithm using learning graphs [Belovs 12]     

35/27=1.296...

O(n9/7)-query quantum algorithm using learning graphs [Lee, Magniez, Santha 13]     

9/7=1.285...

O(n5/4)-query quantum algorithm   ˜

any quantum algorithm based on (non-adaptive) learning graphs, or 
also solving weighted versions, must use                           queries

Recent lower bound for triangle finding [Belovs, Rosmanis 13]:

�(n9/7/
�

log n)

Our result:
Uses combinatorial properties of unweighted graphs, 
and (standard) quantum walks

˜

same complexity also obtained by nested quantum walks [Jeffery, Kothari, Magniez 13]



Quantum Query Complexity of Triangle Finding

results strongly suggesting similar separations are 
known in the classical time complexity setting

Our result proves that, in the quantum query complexity setting, 
unweighted triangle finding is easier than its weighted versions

[Czumaj, Lingas 07] [Patrascu 10] [Vassilevska Williams, Williams 09&10] 

O(n5/4)-query quantum algorithm   ˜Our result:
Uses combinatorial properties of unweighted graphs, 
and (standard) quantum walks

any quantum algorithm based on (non-adaptive) learning graphs, or 
also solving weighted versions, must use                           queries

Recent lower bound for triangle finding [Belovs, Rosmanis 13]:

�(n9/7/
�

log n)



Quantum Walks for Graph Problems
subset of size m

satisfying some condition (e.g., contains an edge of a triangle)

1�
�
� CGrover search:                  queries

Find a marked m-subset B of VProblem:

Quantum walk search over the Johnson graph 

S +
1�
�

��
m� U + C

�
queries

S: setup cost (creating the data structure)

U: update cost (updating the data structure)

C: checking cost
(checking if B is marked given D(B))

[Ambainis 04]

each node of the Johnson graph represents an m-subset B

perform the quantum walk while keeping a data structure D(B) for the visited
m-subset B (example: D(B) = adjacency matrix of the graph induced by B)

Random sampling:                queries 1
�
� C

C: checking cost (checking if an m-subset B is marked)� =
# marked m-subsets

# m-subsets

V : set of vertices of the graph



Triangle Finding: Main Combinatorial Argument

1. Check if the graph contains a triangle with a vertex in X

Take a random set X � V of �(
�

n log n) vertices

x1

x2

N(x1)

N(x2)

u

v �

w�V

|(N(w)�N(w)) \ S| � n2.5 w.h.p.

for each (u, v) � (V � V ) \ S
there are (w.h.p) at most

�
n vertices

w � V s.t. (u, w) � E and (v, w) � E

key property: sparsity

(N(u)�N(u)) � E = � for each u � X

neighbors of u in the graph

2. If no triangle has been found,

with an edge in (V � V ) \ S, where

check if there exists a triangle

.....

at most�
n vertices

S =
�

u�X

(N(u)�N(u))

instead of n3

X

O(
�

|X|� |V � V |) = Õ(n5/4) queries using Grover search



1. Check if the graph contains a triangle with a vertex in X

Take a random set X � V of �(
�

n log n) vertices

w.h.p.

2. If no triangle has been found,

with an edge in (V � V ) \ S, where

check if there exists a triangle

check if �w � V such that (N(w)�N(w)) \ S contains an edge

Step 2 can be implemented using  

queries by Grover search, if each set                                    is known

O

�� �

w�V

��(N(w)�N(w)) \ S
��
�

(N(w)�N(w)) \ S

= O(n5/4)

�

w�V

|(N(w)�N(w)) \ S| � n2.5

S =
�

u�X

(N(u)�N(u))

w.h.p.

O(
�

|X|� |V � V |) = Õ(n5/4) queries using Grover search

Triangle Finding: Main Combinatorial Argument



Problem with this strategy

w.h.p.
�

w�V

|(N(w)�N(w)) \ S| � n2.5

Similar sparsity arguments have been used in prior works, with similar issues
• classical combinatorial algorithms for Boolean matrix multiplication [Bansal, Williams 09]

• quantum combinatorial algorithm for Triangle finding [Magniez, Santha, Szegedy 05]

Problems:
Computing S requires �(|X|� |V |) = �̃(n1.5) queries

Computing each (N(w)�N(w)) requires �(|V |) = �(n) queries

(we would like Õ(n3/4) queries)

(we would like Õ(n5/4) queries)

①

②

S =
�

u�X

(N(u)�N(u))

w.h.p.

Step 2 can be implemented using  

queries by Grover search, if each set                                    is known

O

�� �

w�V

��(N(w)�N(w)) \ S
��
�

(N(w)�N(w)) \ S

= O(n5/4)

check if �w � V such that (N(w)�N(w)) \ S contains an edge



Problem with this strategy

Step 2 can be implemented using  

queries by Grover search, if each set                                    is known

O

�� �

w�V

��(N(w)�N(w)) \ S
��
�

(N(w)�N(w)) \ S

= O(n5/4)

Step 2 can be implemented, using quantum walks, without (completely) constructing these sets

Problems:
Computing S requires �(|X|� |V |) = �̃(n1.5) queries

Computing each (N(w)�N(w)) requires �(|V |) = �(n) queries

(we would like Õ(n3/4) queries)

(we would like Õ(n5/4) queries)

①

②

S =
�

u�X

(N(u)�N(u))

check if �w � V such that (N(w)�N(w)) \ S contains an edge



Grover

Grover

First (incomplete) solution

�B � V of size |B| =
�

n such that

check if �w � V such that

Solution: our quantum algorithm

Q. walk

Grover

Grover

Computing S e�ciently

Computing each (N(w)�N(w)) e�ciently

①
②

Problems for exploiting the sparsity:

Current approach

problem ① remains: how to compute                      ? 

check if �w � V such that

(N(w)�N(w)) \ S contains an edge

D(B)=N(w)�B
with data structure

((N(w)�B)�(N(w)�B)) \ (S�(B�B)) contains an edge

known: this solves problem ②
S � (B�B)



Grover

Q. walk

Final algorithm

Grover

�B � A of size |B| =
�

n such that

Q. walk

�w � V such that

known 

check if �A � V of size |A| = n3/4 such that

Grover

Grover

First (incomplete) solution

�B � V of size |B| =
�

n such that

check if �w � V such that

Q. walk

known: this solves problem ②

with data structure

with data structure

D(B)=N(w)�B
with data structure

D(B)=N(w)�B

D(A) = S � (A�A)

((N(w)�B)�(N(w)�B)) \ (S�(B�B)) contains an edge

((N(w)�B)�(N(w)�B)) \ (S�(B�B)) contains an edge

known, since             

this solves problem ①
S � (B�B) � S � (A�A)

problem ① remains: how to compute                      ? S � (B�B)



((N(w)�B)� (N(w)�B)) \ (S�(B�B))if all sets                                                           are sparse

example: creating D(A) uses O(|X|� |A|) = Õ(n5/4) queries

Grover

Q. walk

Final algorithm

Grover

Q. walk

known 

check if �A � V of size |A| = n3/4 such that
with data structure

with data structure

D(B)=N(w)�B

D(A) = S � (A�A)

�B � A of size |B| =
�

n such that

�w � V such that

((N(w)�B)�(N(w)�B)) \ (S�(B�B)) contains an edge

Technical difficulty:

The same ideas still work by carefully defining the second walk and using 

�

w�V

|(N(w)�N(w)) \ S| � n2.5Sparsity argument w.h.p.

“Grover search with variable checking costs ([Ambainis 08])” at the second level

Sparsity may not hold for each set ((N(w)�B)� (N(w)�B)) \ (S�(B�B))

The overall query complexity of this 4-level algorithm is 

known             

Õ(n5/4)



1. Check if the graph contains a triangle with a vertex in X

Take a random set X � V of �(
�

n log n) vertices

2. If no triangle has been found,

with an edge in (V � V ) \ S, where

check if there exists a triangle

Step 2 can be implemented using  

queries by Grover search, if each set                                    is known

O

�� �

w�V

��(N(w)�N(w)) \ S
��
�

(N(w)�N(w)) \ S

= O(n5/4)

S =
�

u�X

(N(u)�N(u))

Step 2 can be implemented using  queries by our 4-level algorithmÕ(n5/4)

O(
�

|X|� |V � V |) = Õ(n5/4) queries using Grover search

Triangle Finding: Main Combinatorial Argument



Conclusion: Current Status of Triangle Finding

any quantum algorithm requires �(n) queries best known lower bound

O(n1.3)-query quantum algorithm using quantum walks [Magniez, Santha, Szegedy 05]
       (also solves weighted versions of triangle finding with the same complexity)     

O(n35/27)-query quantum algorithm using learning graphs [Belovs 12]     

35/27=1.296...

O(n9/7)-query quantum algorithm using learning graphs [Lee, Magniez, Santha 13]     

9/7=1.285...

O(n5/4)-query quantum algorithm for unweighted triangle finding    ˜Our result:

[Belovs, Rosmanis 13]:

                              -query lower bound for weighted triangle 
finding and for the (non-adaptive) learning graphs approach
�(n9/7/

�
log n)

˜


